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Abstract 
The argument follows from the viewpoint that quantum mechanics 

is taken not in the usual form involving vectors and linear operators 
in Hilbert spaces, but as a boundary value problem for a special class 
of partial differential equations-in the present work, the nonrelativis- 
tic Schrodinger equation for motion of a structureless particle in four- 
dimensional space-time in the presence of a potential energy distribution 
that can be time- as well as space-dependent. The domain of interest is 
taken to be one of two semi-infinite boxes, one bounded by two t=constant 
planes and the other by two t=constant planes. Each gives rise to a char- 
acteristic boundary value problem: one in which the initial, input val- 
ues on one t=constant wall are given, with zero asymptotic wavefunction 
values in all spatial directions, the output being the values on the sec- 
ond t=constant wall; the second with certain input values given on both 
z=constant walls, with zero asymptotic val'ues in all directions involving 
time and the other spatial coordinates, the output being the comple- 
mentary values on the z-constant walls. The first problem corresponds 
to ordinary quantum mechanics; the second, to a fully time-dependent 
version of a problem normally considered only for the steady state (time- 
independent Schrodinger equation). The second problem is formulated in 
detail. A conserved indefinite metric is associated with space-like propa- 
gation, where the sign of the norm of a unidirectional state corresponds 
to its spatial direction of travel. The time t ,  its conjugate momentum 
pt  = -itia/dt, and its momentum-space form iAa/apt, appear as oper- 
ators in the space of states. A theory of average dwell and delay times 
in the interaction of a particle with a generic time-dependent potential 
barrier is proposed. Analytic results are obtained for the simple case of a 
step potential barrier. The problems of calculating dwell and delay times 
in first-order perturbation theory are treated in an appendix. 

* email: ghahne@maii.arc.nasa.gov 
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1 Introduction 
Within a few years after the discovery of quantum mechanics a consensus formed 
(von Neumann [l], p. 188 and [2], p. 354, Pauli [3], p. 140, footnote, and [4], p. 
63, footnote) to  the effect that, in contrast t o  spatial positions, and therefore in 
conflict with special relativity, the temporal position t is necessarily a c-number, 
or parameter, with no generic operator status being mathematically feasible. In 
the decades intervening since the publication of the original versions of the two 
cited treatises in 1932 and 1933, respectively, the prohibition on specifying the 
time as a dynamical variable has been widely upheld as part of the standard 
doctrine of quantum mechanics-see, e. g., Peres [5] Chap. 12-7 and OmnBs [6] 
p. 57. In recent decades interest in this subject has intensified, due in part to 
applications of tunneling phemomena in semiconductors ([7], [a] Ch. 3.2.3), and 
a substantial set of results has been published that introduce formalisms that 
argue for, or against, various quantum-mechanical definitions of time, including 
tunneling times, dwell times, delay times, and arrival times. For definitions, 
reviews, and citations, see Refs. [9], [lo], [ll], [12], and a collection of articles 
in [13]. 

In this paper we shall consider only the nonrelativistic form of quantum 
mechanics, restricted to the problem of determining the wave function of a 
massive, structureless particle in Galilean four-dimensional space-time in the 
presence of a given space- and time-dependent potential energy distribution. We 
shall treat quantum mechanics as a boundary-value problem for the Schrodinger 
equation: the specified boundary values will be regarded as input to the problem, 
and the derived interior values and complementary boundary values will be 
considered as the overall output. 

Since the Schrodinger equation is of first order in time and of second or- 
der in the spatial coordinates, it is, mathematically speaking, necessary and 
sufficient to supply wave function values on one t=constant surface, and a suit- 
able combination of wave function and normal-derivative values on each of two 
z=constant boundary surfaces, to infer that an interior solution exists and is 
unique, as discussed in Ref. [14], Ch. 5, 53. (Our mathematics differs from 
Friedman’s in that we shall administer nonlocal boundary conditions, which 
distinguish input from output signals, on the spatial boundaries.} Conventional 
time-dependent quantum mechanics for the most part deals with specifying ini- 
tial, or (but not and) occasionally final, values on a t=constant surface and 
simple (often, zero) values on the spatial boundaries, which can be partly or 
wholly at infinity. Nontrivial spatial boundary values, as incoming wave ampli- 
tudes in a scattering problem, are conventionally specified only in the context 
of the time-independent Schrodinger equation. In the present work we shall 
generalize the latter problem by considering general time-dependent, as well as 
space-dependent, input values on spatial boundaries, in the presence of explicit 
time dependence in the potential energy function in the differential equation 
itself. We shall hereinafter denote these cases of boundary value problems as 
Type I and Type 11, respectively. These correspond, roughly and respectively, 
to the first and second initial-boundary value problems analyzed in Ref. [14], 
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Chs. 3 and 5. 
In the first problem, the wave function evolves in time from given initial 

values, with time-independent spatial boundary values. In the second problem, 
we shall consider that the wave function evolves with respect to a single spatial 
coordinate, say the z-coordinate, such that the interior domain corresponds to 
a finite interval in the chosen coordinate z.  Since the differential equation is of 
second order, determining the evolution of a wave function in a spatial direc- 
tion is generally a more difficult task of analysis in both the mathematical and 
physical senses than one for its evolution in time. We summarize the derivation 
to be carried out below in terms of the following nine observations, steps, or 
results: (i) the space of states on any given z = z1 hyperplane has a natural 
doubled structure in that it comprises the direct sum of the values and of the 
z-derivatives of the usual space of wave functions $(t ,  z, y, z )  at z = 21; (ii) the 
Hamiltonian is a 2 x 2 matrix of operators that is derived from the ordinary 
Schrodinger equation; (iii) the familiar expression for the probability current 
density in the z-direction is used to infer the definition of a metric operator in 
the space of states, where now inner products include an integral over t as well as 
over z and y; (iv) the metric so derived is indefinite, and the Hamiltonian is self- 
adjoint with respect to the metric (synonymously, pseudo-Hermitean); (v) the 
norm being indefinite, we shall sometimes use the term “particle presence” to 
denote the unit operator, the expectation value of which is the above-mentioned 
norm; (vi) apart from modifications needed for closed channels, the formalism 
can be established so that waves traveling in the +z direction have positive 
norm, and waves traveling in the -z direction have negative norm with respect 
to  the metric; (vii) the input and output a t  either end of a finite spatial interval 
[zl ,  z2] are taken to comprise, respectively, the superposition of waves traveling 
into, and the superposition of waves traveling out of, the interval at the initial 
point z1 and at the final point 22 (this means that there will be only outgoing 
scattered waves from a zone of interaction); (viii) orthonormal sets of input or 
of output states, transition amplitudes, and probabilities are then computed 
using what amounts to a Hilbert space inner product, which is derived from 
the indefinite metric, but. depends on the wave function and its r-derivative at 
both z1 and 22; (ix) the dynamics yields a mapping of open-channel input into 
open-channel output that is unitary. 

The fact that a pseudo-Hermitean Hamiltonian describes the spatial evolu- 
tion of a physical system’s wave function has another concomitant: the Hamil- 
tonian can have, as well as real eigenvalues, nonreal eigenvalues that occur in 
complex conjugate pairs (Gohberg, et al., [15] p. 23, Proposition 2.4). Each 
such pair is associated with the two wave function solutions (one rising, the 
other falling exponentially) for a closed channel, or classically inacessible region 
for the system when it is in an associated quantum state. We shall argue that 
it is natural to define the direction of travel of such a wave as the direction 
in which it decreases exponentially-however, the simple exponential states in 
such a pair each have zero norm and, with proper normalization, unit over- 
lap, which complicates the formalism. A further complication results from the 
circumstance that a degenerate eigenvalue of a Hamiltonian, which in simple 
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problems is often a zero value, requires special treatment when the Hamiltonian 
cannot be diagonalized by a similarity transformation, leading to the appear- 
ance of so-called “ghost” quantum states. There is more discussion on these 
problems below. 

Formalisms for the spatial evolution of a wave function were proposed by 
Kijowski [16] and by Piron [17], and their work was discussed by Pvlielnik [MI. 
These two approaches differ substantially from each other and from the for- 
malism introduced herein, as will be discussed following Eq. (11) and in Sec. 
5. 

The quantum mechanics describing evolution of a wave function in both 
directions across a spatial interval is to  an extent patterned after the author’s 
previous work [19] on a quantum dynamics that encompasses joint bidirectional 
evolution of a quantum state between two temporal walls. 

The remaining sections are organized as follows: In Sec. 2, we shall formulate 
expressions for the four-current density associated with a physical quantity, and 
for the local space-time density for creating or destroying that quantity in a 
quantum-mechanical system. We shall also show how to prescribe physically 
motivated boundary conditions so that the Schrodinger equation can be solved 
in a semi-infinite (finite in the z-direction, infinite in the t ,  x, y-directions) box. 
In Section 3 we shall propose a formalism for computing the average temporal 
position of the particle at both spatial walls of the box, given the spatial input 
and given the S-matrix deriving from a general interaction potential energy in 
the box’s interior. These results will then be used to compute formulas for dwell 
and delay times for the particle remaining within, reflecting from, or transmitted 
across, the box. In Section 4 we shall obtain analytic formulas for the delay times 
for a step potential in the z-dimension (and constant in the other dimensions). 
Section 5 contains a discussion of the present formalism and of previous work 
on the subject. An appendix analyzes the problem of dwell and delay times for 
a weak, transient potential energy in first-order perturbation theory. 

2 Quant um-mechanical formalism 
In this section we shall set up and discuss the theory that forms the “floor” of the 
present work. Rather than attempt to  make the formalism highly general, we 
shall develop the argument in a particular context: the wave function solution 
of SchrGdinger’s equation for a particle moving in the interior of a certain simple 
box of four-dimensional space-time. In particular, we propose a formalism and 
an interpretation that incorporate the wave function into an expression for the 
space-time “flow” density of a physical quantity, which quantity corresponds to 
a certain linear operator in the function space of fully time- and space-dependent 
wave functions. We shall argue that is is natural to regard the four-divergence 
of the flow as the local density of creation and destruction of that quantity at 
a point in space-time for the physical system in that time-dependent quantum 
state. Either the volume integral of the divergence, or the surface integral 
of the normal component of the flow vector density, therefore represents the 
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total amount of that quantity generated inside the space-time box. If that 
quantity is the time t, this integral plausibly represents the average so-called 
dwell time of the particle in the given box, given that the wave function is 
properly normalized. 

Let B1 and t32 be the following open boxes in space-time: 

a, = ((t,x,y,z)lt1 < t < t2,-0O < 2 < 00,-0O < y < 03,- -00 < z < a}. 

a, = {(t,x,y,z)l -XI < t < co, - -Oo < x < 0O,-0O < y < m,z1 < z < z,}. 
( 1 4  

Ob) 

The Schrodinger equation for $(t, x, y, z )  for a particle of mass m can be derived 
from a variational principle for an action A, as given in Schiff ([20], p. 499), but 
modified to make it real: 

The equations of motion are to be obtained by keeping the boundary values of + and $* fixed, and pretending that in the interior region $ and $* can be var- 
ied independently and “arbitrarily”. The action is stationary when $(t, x, y, z )  
satisfies 

ti2 
i dt 2m 
-- - a$ 

-V2$ + V(t,x, y, z)$ = 0, (3) 

and $(t, x, y ,  2)’ satisfies the complex conjugate equation, for all (t, 2, y,  z )  E 
231 or a,. 

Henceforth when we say “solution”, we shall mean a function defined over 
the entire box such that it satisfies equation (3) everywhere in B1 or B2. The 
linear operators representing physical quantities will normally carry a solution 
into another space- and time-dependent function that is not a solution, so in 
efFect we shall deal with the more general vector space of well-behaved, complex- 
valued functions of space and time that need not be solutions of the Schrodinger 
equation. 

A standard problem in conventional quantum mechanics arises if we con- 
strain $(t, x, y, z )  to be zero on the infinite parts of the spatial boundaries of 
the box &, that is 

$(t, x, y,  z )  + 0, if 1x1 + (y1+ IzI + 00. (4) 

and require that 

where u(x, y, z )  is some given complex-valued function on the earlier temporal 
boundary of the box. As is well known, the interior values of $(t, x, y ,  z ) ,  and 
the limiting values on the temporally later boundary of the box at t = tz ,  are 
all uniquely determined by the differential equation and these input boundary 
conditions. The derived values are all output in a sense, but we shall often mean 

$,(t,2,y,z) - $ 4 2 , Y , Z ) ,  as t -+ t l ,  (5) 
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by output just the subset of boundary values that were not given as input, in the 
present case $ ( t z ,  x, y, z )  with -m < x < 03, -w < y < co, and -m < z < co. 

Now let us consider a problem in box ,132 such that certain information about 
the limiting values of $(t ,  x ,  y ,  z )  and d$/dz(t ,  x ,  y ,  z )  on the two walls z = zl 
and z = z2 is given as input, while the wave function is supposed to tend to  
zero as t and/or x and/or y tend to kw. We want to specify just enough input 
information so that a solution satisfying the input boundary conditions exists 
and is unique. In order to accomplish this, we need to  do some preliminary 
work. We shall not keep to a mathematically rigorous derivation, but appeal to  
plausibility arguments at most steps. 

We now convert the above variational principle to  Hamiltonian form using 
the methods of Goldstein ([21], Chap. 12-4), with the proviso that it is the 
spatial parameter z ,  rather than t ,  that is taken as the evolution coordinate for 
the wave function. The quantity in square brackets in (2) is the Lagrangian 
density L. The canonical field momenta are 

The action principle becomes 

where the Hamiltonian density is 

2m iii a+ i h a p  ti2 a+* a$ a$* a+ 
A- 2 at 2 d t  2m ax ax a y  a y  x=-- p ~ p * =  - -$* - + - -+ + - ( - - + - -) + $* V$.  (8) 

The equations of motion obtained by varying $* and p+ are a coupled set of 
linear equations; a complex conjugate set is obtained by varying $ and ~ $ 9 .  We 
write the former equations in 2 x 2 matrix-operator form as follows: We first 
define 

then the equations of motion can be written 

where the Hamiltonian H,,, (the subscript “sev” stands for “spatial evolution”) 
is 7 (11) 

0 

+[qg + &(& + 6) - V ( t , x ,  y , z ) ]  0 . Hsev = 
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We note that Piron [17] obtained a Schrodinger equation for a wave func- 
tion’s evolution along the space-like coordinate x, but Piron’s wave function has 
one component, and the Hamiltonian is the operator derived from the classical 
quantity that generates dynamical motion along a the x-axis. Piron thereupon 
obtained a general expression for the evolution in x of the average temporal 
position of a particle in one space dimension, but did not develop the theory 
further. 

In the ordinary quantum mechanics derivable from the variational principle 
Eq. (2), the third-, or t-component of the conserved probability four-current 
density is ([20], p. 27) 

In the present language this expression takes the form 

where it4 is the 2 x 2 matrix 

= [ o  i] 
-i 0 . 

Note that the matrix it4 is Hermitean, has unit square, and has eigenvalues f l ,  
so that it can engender an indefinite metric. By inference, we make a guess for 
an inner product law for two z-propagating states: 

(*1(z);@2(z)) = fi-’ JJi3 dt dx dy 191 (t,  x,y, z>+ M W ~ ,  5, y, (15) 

Note that this formula has the appropriate physical dimensions, in that if $ 1 , ~  

have the usual dimension length-3’2, then the above inner product is dimen- 
sionless. 

We shall now argue that the above ingredients can be made into a theory 
of space-like evolution of a Schrodinger wave function. We shall work with 
the case of z-evolution of a wave function in four-dimensional space-time, but 
generalizations to  other cases, as radial or reaction coordinates (see [22]) for the 
(3N + 1)-dimensional space-time involved in an N-particle wave function, are 
formally straighforward. 

Let S be the space of functions of type Eq. (9), with some appropriate 
boundary conditions. We define the M-adjoint of a linear operator W acting 
on this space as that unique operator Wt such that 

(W%; 9 2 )  = (91; W@2) (16) 

for all @ 1 , 9 2  E S; in 2 x 2 matrix form, with Wt as the ordinary Hermitean 
conjugate, we have 

Wt = M W t M .  (17) 
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If 

we call W pseudo-Hermitean, and if 

W f  = w 

wf = w-1 (19) 

we call W pseudo-unitary. 
If W is pseudo-Hermitean and the state Q is suitably normalized, we want 

to make the plausible specification that the (necessarily real) number (S;  W S )  
is the expectation value of W in the state Q. We argue in favor of this axiom 
as follows: Let xo = t ,  x1  = x ,  and so on. Suppose that in the conventional 
Schrodinger formalism, w is some physical quantity, such as the time 5, the spa- 
tial positions 2,  g,  5, or the “particle presence” i (we denote operators standing 
for physical parameters with a L‘hatek’’ accent over the symbols). We define the 
four-vector “flow” density J p ’ ( t ,  x,y,  z ) ,  p = 0,1,2,3, of w as 

JA%, 5 ,  Y, 2) = +(t, x ,  Y, z)*w$(t, 2, Y, 2) (204 

- -(t ,x,y,  z )w$( t ,x ,y , z )  , for k = 1,2,3. (20b) 
dXk 

We compute the four-divergence of the above vector field, assuming that 1c, is a 
solution to Eq. (3): 

k = l  
2im 

This divergence can be construed to be the local density of creation or de- 
struction of the quantity w by the system in the state $(t, x ,  y, 2). If the di- 
vergence is zero, as for the case w .  = i, the associated quantity is not being 
created or destroyed and is both globally and locally conserved. More compli- 
cated situations can arise, as for w = I, = 2pv - g&, the z-component of angular 
momentum, for a rotationally symmetric potential: The four-divergence of the 
current reduces to  an x ,  y-divergence, and therefore integrates to zero over the 
entire region; that is to  say, E ,  is here globally, but not locally, a conserved 
quantity. If w = t ,  we find that 

p=O 

Hence, the so-called “dwell” time TD of the particle in a box B with the given 
input is the space-time integral of the density of creation of time over the box, 
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that is, 

The latter result reproduces a formula given in Ref. [12] Eq. (2.2), Ref. [23] Eq. 
(2.67), and Ref. [24] Eq. (14). By the divergence theorem we can convert the 
volume integral to a surface integral, so that we have either 

Hence if we have a boundary problem of Type I, such that $(t, x, y, z) is zero on 
the spatial walls, and .JI has the usual conserved unit norm on the t=constant 
walls, we find, with Eq. (20a) 

TA = t 2  - t l .  (25) 

If we have a boundary value problem of Type II-we will discuss later how to 
normalize + in that case-so that $(t, z, y, z) tends to  zero as t ,  z, y become 
large, and using Eq. (20b) 

But, given that we compute q ( t ,  z,y, z) from $(t, z, y, z) by Eq. (9), andirthat 
12 is the 2 x 2 unit matrix, then the operator i I 2  is the time operator in the 
z-evolution formalism, and we have, in the notation of Eq. (15), 

The above results suggest that for a pseudo-Hermitean operator W in the 
space of Q-solutions, and for a boundary value problem of Type 11, we should 
define the expectation value (W},p(,) of W in the state !T!(t,x, y,z) at a chosen 
Z a S  

W ) Q ( Z )  = ( W ;  W W ) ,  (28) 
as was proposed earlier in this section. The value (W),p(,) therefore (in Type 
I1 problems) specifies the average net flow of W across the given z=constant 
surface. The difference of the expectation values of W computed at z = z2 
and z = z1 is therefore the net flow of W out of the box, in other words is, on 
average, the.total amount 0f.W “created” by the system in the box. 

We want now to define input and output on the spatial walls of the box. We 
define a complete, orthonormal basis 4 ( k t  ,k,,k,) (t ,  z, y) for all (t ,  z, y) E R3 as 
follows: 

(29) 4(kt,k,,ky)(t,5, Y) = (2~) -~ /~exp( - - ik t t  + i kzz  + i k ,~ ) ,  
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where kt, k,, and k, each range independently from -m to +m. Although the 
physical dimension of kt differs from that of k, and k,, it is convenient to use 
three-vector notation k = (kt ,  k,, k,) and call the three-volume element d3k = 
dktdk,dk,. The negative sign before kt in the exponent in Eq. (29) is chosen so 
that positive kt corresponds to positive energy; the conjugate momentum to t 
is pt t) (ti/i)a/at ++ -tikt. 

In an expansion of a wave function Q(t, x ,  y ,  z )  in the above basis functions, 
we will encounter certain quantities repeatedly, so we now define simplified 
notation for them: Let < take either value F or B ,  which szand for forward and 
backward motion along z ,  respectively. We also take 

If (2mktlfi) > (kp + k i )  (called an open channel), we define 

k,(k) = [2mkt/fi - k: - k i ]  1/2  , 

and if (2mk,/ti) < (kz + k i )  (called a closed channel), we define 

(32) K , ( k )  = [-2mkt/ti+kP + k i ]  1 /2 . 

We shall normally just use k, and IC, without explicitly citing their arguments, 
except that primed, double primed, and triple primed arguments will be de- 
noted, respectively, by k:, k:, and k y ,  and similarly for IC,. 

Let a wave function have the expansion in basis functions 

^ ^ ^  F 

where the fC(k) are the expansion amplitudes, and where the XC(k; z )  are nor- 
malized solutions for forward or backward motion along z ,  which we construct 
as follows: Substituting Eq. (33) into Eq. (lo), we find that 

where, for V a function of z alone, 

When V ( z )  E 0, and for open channels, we obtain the solutions 
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the corresponding inner products are independent of z: 

A-’Xc’(k;z)+MXc(k;z) = 6c’ca(<). (37)  

Note, however, that these solutions do not satisfy the Cauchy inequality, in 
that Iti-lXc(k’)tMXc(k)J = ( 1 / 2 ) ( , / m  + ,/=), which is greater than 
1 unless ki  = k,. For closed channels the solutions are 

XC(k;z) = [ m / ( h K Z > 1 1 ’ 2  exp[-c(C>(in/4 + K,z)l ] . (38)  
[ . ( C ) ( l / 2 ) ( n 3 K ~ / m ) ’ j 2  exP[-O(C)(iT/4 + b z ) ]  ’ 

the inner products take the z-independent forms 

A-lXC’(k;z)tMXC(k; z )  = 6C‘F6BC + 6C’B6FC. (39) 

In general, the properties that distinguish between between the four types 
of state of motion of a particle, that is open- versus closed-channel type, and 
F versus B type, depend on the local behavior of the state vector in wavenum- 
ber space (kt, k, ,  ky). The corresponding position (t ,  x, y) space forms of these 
properties are nonlocal. As mentioned in Section 5, these properties are likely to 
complicate an attempt to make a physical interpretation, in the context of the 
present formalism, of measurements a t  a given z of local properties in position 
t ,  x, or y. This is in contrast to standard quantum mechanics with t as the 
evolution coordinate, where there is only one type of state ic  x, y, z :  F-type 
and open channel. 

We note that the intermediate free-particle case 2 m k t / h  = kg + ki gives 
rise to  a “ghost” state, in that the reduced Hamiltonian on the rhs of Eq. ( 3 5 )  
cannot be diagonalized by a similarity transformation. In this regard, the word 
“ghost” has undergone semantic drift since its use in the ’50’s-see Nagy [25] ,  
and [26], p. 14 for the former definition, and Kaku [27] ,  p. 62, for the latter- 
day variant,. wherein a state of negative norm is called a “ghost”. The recent 
usage is inappropriate here as states of negative norm are indispensable and 
ordinary, so I shall follow the earlier usage, which is motivated by the definition 
of the minimal polynomial of a finite-dimensional, square, complex matrix-see 
MacLane and Birkhoff [28], Ch. IX.6: Let L be a pseudo-Hermitean operator 
such that there exists a (real or nonreal) eigenvalue A of L,  an integer n 2 2,  
and a state Xx, so that the state ( L  - A)”-lXxn is not the zero state and is an 
eigenstate in that ( L  - A)”Xx, = 0, then X,, will be called a ghost state of L 
of Type n associated with the eigenvalue A. We presume that, for any given L ,  
and for each of its eigenvalues A, there is a bounded number-possibly zero-of 
types of ghosts associated with it. The ghost states associated with fixed L and 
A, and of different types n and m, are linearly independent of each other and 
of associated eigenstates; the direct sum of all the eigenstates and of all the 
corresponding linearly independent ghost states is a complete set of states in 
the overall space. 

Continuing with the zero-potential-energy, intermediate-case solutions, we 
note that the symbols F and B are not useful. We take the solutions XO(A(k2 + 
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, 

k ; ) / ( 2 m ) ,  k,, k,; z )  where cy = 1 , 2 ,  as follows: 

[lmpf1'/21 ' X'(fi(k2 + k i ) / ( 2 m ) ,  k,, k,; z )  = 

where p is an arbitrary positive number of dimension length introduced to make 
the components dimensionally consistent with Eqs. (36) and (38). The inner 
products are also z-independent: 

h-'Xa'(fi(k$ + k i ) / ( 2 m ) ,  k,, k Y ; z ) + M X a ( f i ( k :  + k 3 / ( 2 m ) ,  k, ,  k , ; z )  

0, if cy' = c y ,  (41) = {  + 1 ,  if a'# cy. 

Physically, the states in the intermediate case propagate parallel to any plane 
z=constant, that is, neither forward nor backward along z.  Note that the so- 
lution Eq. (40a) is, and that of Eq. (40b) is not, an eigenstate with eigenvalue 
zero of the reduced Hamiltonian on the rhs of Eq. (35); in fact, the X 2  is a 
ghost state of Type 2 for any choice of k,,  k ,  and t. 

We next compute the inner product at each z of two free-particle wave 
functions Q(t,  2, y, z )  and @(t, 2, y, z ) ,  when they have expansion amplitudes 
fc(k) and gc(k), respectively. It is convenient to  divide k-space into domains 
for open and closed channels: 

The inner product of Q and Qi is z-independent, and takes the form 

Note that the subspace generated by "F" open-channel states has a positive 
definite norm, while the space of "B" open-channel states has a negative defi- 
nite norm; both of these subspaces therefore comprise a Hilbert space. In the 
scattering phenomena analysed in Section 3 we shall discover that the open- 
channel sub-matrix of the S-matrix is unitary, and preserves the inner product 
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of two vectors belonging to  a direct sum of these Hilbert spaces referring to dif- 
ferent z-planes, assembled so that the sign of the inner product and metric are 
reversed in the second subspace component-hence there is a positive definite 
metric overall. The “F’ and “B” Hilbert spaces on any z=constant plane are 
of limited utility, as most linear operators encountered in the space of states do 
not map such a Hilbert space into itself, but generate superpositions of open- 
and closed-channel states. 

The question of normalizing the space-evolving wave functions can now be 
addressed: If the potential V(t ,  z, y, z )  # 0 in, and only in, the interior of the 
box B2, a solution Q(t, z, y, z )  of Eq. (10) can be expressed in an expansion of 
the type Eq. (33), belonging to  potential-free regions, in the neighborhood of 
both z = z1 and z = 2 2 ,  but with different expansion amplitudes at each end of 
the interval. We first define the basis functions 

Zc(k; t ,  z, y, z )  = ( 2 7 ~ ) - ~ / ~  exp(-iktt + ik,s + ik,y)XC(k; z). (44) 

We assume here and unless otherwise stated that there is no closed-channel 
input, and adopt the following conventions: 

Q(4 2, Y, = 

Since the flow of particle presence is conserved, the norms of Q(t,z,y,zl) and 
Q(t,  z, y, z2) are equal: 

Note that  at z = z1, the forward and backward flowing parts of the wave func- 
tion correspond to  input and output, respectively, with the opposite association 
at z = 22. Note also that for a time-dependent potential energy there will be 
scattering from open-channel input into both open- and closed-channel output, 
which circumstance is accounted for in Eq. (45). We now define a normalized, 
Type I1 wave function as one for which the input amplitude function is normal- 
ized to one, that is, 

( i h ( z 2 )  = ( i h ( Z l ) .  (46) 

J J Jopen 
(47) 

where the second equation follows from Eqs. (43), (45), and (46). Note that there 
is no contribution to the output normalization from closed-channel amplitudes. 
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We conclude the section by developing a formula for the expectation value 
of the operator f I 2  in terms of the wave-number space expansion amplitudes 
fC(k). Let q ( t ,  x, y ,  z )  be as in Eq. (33). Then we have 

x fC(k)(2n)-3/2texp[-iktt + ik,x + ikyy]XC(k; z) .  

Replacing t exp[-iktt] by i(d/dkt) exp[-iktt] and integrating by parts on kt, we 
find that 

I d  
2 dkt 

x ( 2 ~ ) - ~ / ~  exp[-iktt + ik,z + ikYylT- [fc(k)Xc(k; z ) ] .  

Analogous to spatial position operators in momentum space, the operator for t 
transforms into -iL?/dkt, the sign difference being a result of the negative sign 
in the exponent in Eq. (29). This result agrees with that in Ref. [29], Ch. 8, Eq. 
(286); see also [16], 58. 

The evaluation of Eq. (49) is facilitated by the following formulas: for < = F 
and B and for = B and F ,  respectively, and for open channels, 

1 dXC mz 
a dkt fikZ 

ti-'XC(k;z)tMT-(k;z) = -, 

(50b) 
1 ax<' im 
a dkt 2li.k: 

h-lXC(k;z)tMT-(k; z )  = o(c)- exp(-o(<)2ikzz), 

while for closed channels 

(514 
1 dXC m h-lXC(k;z)tMT-(k;z) = - - C T ( [ ) ~  exp(-a(c)2rcZz), 
a dkt 2hn, 

imz 
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If we carry out the differentiations in the integrand of Eq. (49), we find that 

im 
2fik,2 

- - exp(+2ik,t)fB(k)*fF(k) 

im 
2fik,2 + - exp(-2ikzz)fF(k)* fB(k) 

Due to the denominators involving k: or K,: in the above, convergence of the in- 
tegrals requires that the fc(k) approach zero sufficiently rapidly as k approaches 
the boundary between open and closed channels. 

3 Scattering; dwell and delay times 
In this section, we shall presume the presence of a generic potential energy 
distribution V( t ,  z, y, z ) ,  such that its support is contained within the box I 3 2 .  

The potential energy gives rise to  scattering of the (we presume, purely open- 
channel) input signals, such that reflected and transmitted waves across the 
spectrum of k, including both open and closed channels, will comprise the out- 
put signal from the box. We now assume that our prescription for specifying 
the input yields necessary and sufficient information such that a solution to the 
Schrodinger equation within the box exists, satisfies the input boundary condi- 
tions, and is unique. Accordingly, the output is determined by the input, and 
this associ&tion must be linear in view of the linearity of the Schrodinger equa- 
tion. The linear operator specifying this association consists of reflection and 
transmission coefficients, which can be assembled into an S-matrix, which-as 
we shall verify-has a submatrix, referring to  purely open-channel output as 
well as input, that is unitary. 

We presume that the Schrodinger equation has been solved for all open- 
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channel inputs, and express the output linearly in terms of the input as follows: 

f i t ( k )  = JJJ d3k‘ 
open 

x [RBF(k; k’) fg(k’) (53) 

+ TBB(k; k’) ff(k’)], 

[TFF (k; k’) fi (k’) (54) 

+ RFB(k; k‘) ff(k’)]. 

The functions TFF, RFB, RBF, and TBB are reflection and transmission coeffi- 
cients, where the input-to-output superscripts are to be read from right to  left. 
In Eqs. (53) and (54), consistent with Eqs. (45a) and (45b), the reflection and 
transmission coefficients are defined for the output parameter kt having either 
an open- or a closed-channel value. 

For later convenience, we define 

lopen(k’ - k”) = bopen(ki - kr)d(ki - k ~ ) b ( k ~  - ki), (55) 

where bopen(ki - k:) is defined only for both k: and corresponding to open 
channels. 

Let us now substitute Eqs. (53) and (54) into Eq. (47). We obtain a quadratic 
expression in the input amplitudes fk on both sides of the resulting equation. 
Since the these amplitude functions are arbitrary, the coefficients of the four 
quadratic terms must be equal. We infer that, for both ki and kr being of 
open-channel type, 

d3k TFF(k; k’)*TFF(k; k”) 

(56) 
N p e n  [ 
+ RBF(k; k’)*RBF(k; k”)] 

- - IoPen (k‘ - k”) , 

RFB(k;  k’)*RFB(k; k”) 

+ TBB(k; k’)*TBB(k; k”)] 

- - loPen(k’ - k”), 

RFB(k; k’)*TFF(k; k”) 

+ TEB(k; k’)*RBF(k; k”)] = 0, 

(57) 
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d3k RBF(k; k’)*TEB(k; k”) 
J J l p e n  [ (59) 
+ TFF(k; k’)*RFB(k; k”)] = 0. 

Let us now make up an S-matrix and its transpose conjugate Sf from the 
reflection and transmission matrices. In the following, the unprimed index kt 
ranges over all real values, while k,‘ and range over open-channel values only: 

S(k; k”) 
= [iFFjk; k”) RFB(k; k‘)] 

- TFF(k; k’)* RBF(k; k’)*] 

(60) 
BF k;k”) TBB(k;k”) ’ 

St (k’; k) 
(61) 

- [RFB(k;k’)* TBB(k;kr)* 

It is convenient to define two submatrices of S, the open-channel part So and 
the closed-channel part S, as follows: 

S,(k; k’) = S(k; k’), for all kt > (fi/2m)(k: + I C : ) ,  

S,(k; k‘) = S(k; k’), for all kt < (fi/2m)(kE + ki). 
(624 

(62b) 

Then So is unitary on the left as a result of Eqs. (56)-(59): 

(SjSo) (k’; k”) 

One expects that So is also unitary on the right, 

(S,S~)(k‘; k”) = 12 @ Iopen(kr - k”). (64) 

We now reduce the formulas for the expectation values of the operator iI2 at 
z = ~ 1 ’ 2 2 ,  using Eqs. (45), (52), (53), and (54), and then establish a relatively 
simple form for the difference of the two values. We assume that the input am- 
plitudes fk(k) and the output state values of the S-matrix elements go to  zero 
at the open/closed-channel threshold so that the following integrals converge. 
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The matrix of coefficients is as follows: 

AFF(k; k’; z1) 

fikz 
im 

2hk,2 

- -loPen(k mz1 - k’) - 

+ - exp(-2ik,zl)RBF(k; k’) 

- REF@’; k)*% exp(+2ik:z1) 
2fik12 

, + Illpen d3k“RBF(k”; k)* 

x % - ?-!-]RBF(k”;k’) [ tik: i dk: 

exp (2 K: z 1) RB (k  ” ; k’ ) ; 
m 

x -  
2tin9 

AFB (k; k’; 21) 

2hk; 
- - - im exp(-2ikZzl)T B B  (k, .k’ ) 

+ //lpen d3k“ RBF(k”; k)* 

x - - !a] TBB(kf’; k‘) [;: idk: 

+  lo lo,,, d3k” RBF(k”; k)* 

exp ( 2 4 ~ 1 )  T (k” ; k’ ) ; 
m 

x -  
2 A K p  

ABF (k; k’; 21) 
im 

2fiki2 
- - -TBB(k’; k)*- exp(2ik:zl) 

+ //lpen d3k“TBB (k”; k)* 

mzl 1 d x 

exp ( 2 4  21)  RBF (k” ; k’) ; m 
x -  

2firCp 
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ABB(k; k’; 21) 

At z = 2 2  we have 

x f;C,(k)*CCC’(k; k’; 2 2 )  f i ( k ’ ) .  

In the above, the coefficient matrices are 

CFF(k; k‘; 2 2 )  

= /JLpen d3k”TFF(k”; k)’ 

x - + T- TFF(k”;k’) [;; ,‘d!J 

x - + T- RFB(k”; k) 

- JJL,osed d31c”TFF(k”;k)* 

[:; :a::] 

m 
x -  exp( - 2rc;z2)RFB (k” ; k’) ; 

2 f i K i 2  
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CBF(k; k’; ~ 2 )  

- - -- im exp( 2i k2z2)TFF (k; k’) 2Ak: 

+ J/Lpen d3k” RFB(k”; k) * 

- J/LlOsed d3k“ RFB(k“; k)* 
m 

exp( -2nyz2)TFF (k”; k’) ; x -  
2hn:’2 

CBB(k; k‘; 22) 

- - im exp(2ik,z2)RFB(k; k’) 

+ RFB(k‘;k)*- im exp(-2ikLz2) 
2hkh 

2Ak: 

+ //Lpen d3k”RFB(k”; k)* 

(73)  

(74) 

The difference of the two expectation values takes the form 

We break the D-matrices into constituents: 

D = D1+ MD2So + SADiM + S!D3So + SLD4Scl (76) 

where 

m 
2hk; 

exp(22kzz2), -- exp(-2ik2tl) 
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In Eqs. (79) and (80), the double primes indicate the dummy variables of inte- 
gration implicit in the final two summands on the rhs of Eq. (76). 

It is plausible that Eq. (75), given that the total input is normalized as in 
Eq. (47), provides a complete expression for the mean dwell time of the particle 
in the box, inasmuch as it is also an expression for the space-time integral over 
the box of the divergence of the flow vector density of time. We remark that 
if the potential energy is time-independent, then the So-matrix takes the form 
So(k"; k') = dopen(IC; - ICl)So(kf,k:, k i ;  IC: ,  I C ; ) ;  one can now show that, due 
to the unitarity of So, the terms involving --idfL/dk;(k') cancel out in the 
overall expression for the dwell time. This cancellation does not, as we shall 
see, occur for the individual delay times for transmission or reflection from a 
zone of time-independent interaction. 

The average delay times that are measured in beam experiments for either 
transmission or reflection are not so fundamentally defined. We simplify the 
problem as follows: First, we assume that only one kind of input, that is F or but 
not and B, is present. Second, we assume that the closed-channel contributions 
will be negligible in the measuring apparatus. Third, we neglect interference 
between the incoming signal and the outgoing signal in the case of reflection 
(hence, the contributions linear in the S-matrix are discarded). We now specify 
what remains after these simplifications. 

In the first instance, let fE(k) E 0, and let fc be normalized as in Eq. 
(47). The net outgoing reflected and transmitted currents of particle presence 
are called 72gkF(z1) and 7y>p(z2), respectively, and take the values 

x (-l)RBF(k"; k)*RBF(k"; k')fL(k')], (8% 

x TFF(k"; k)*TFF(k"; k')f[(k')]. (81b) 

According to Eq. (56), we have 

The mean currents of time at entry and upon reflection at zl, and upon trans- 
mission at 22, will be called, respectively, .: (21 ), ~ g : ~  ( z l ) ,  and T F ~ ~  (z2), and 
can be inferred from Eqs. (66) (twice) and (71), subject to the three simplifica- 
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tions spelled out in the previous paragraph, as follows: 

In the second instance, let f i ( k )  E 0, and let fE(k) be normalized as in Eq. 
(47). The net outgoing reflected and transmitted currents of particle presence 
are called RYLB(z2) and 7iFB(-z1), respectively, and take the values 

x RFB(k”; k)*RFB(k”; k’)fE(k’)], (844 

G:B(zi) = /JJ d3k/// d3kr //lpen d3kf‘[ft(k)*T”(kr’; k)* 
open open 

(84b) x (-l)TBB(k”; k’)fin B r  (k )]. 

According to Eq. (57), we have 

R y L B ( Z 2 )  - G F B ( Z 1 )  = 1. (85) 

The net currents of time at 2 2  upon entry and after reflection, and at  Z? after 
transmission, will be called, respectively, T;”(z~) ,  T F : ~ ( Z ~ ) ,  and T F : ~ ( Z ~ ) ,  and 
can be inferred from Eqs. (74) (twice) and (69), subject to the three simplifica- 
tions given previously, as follows: 

22 



. 

We now undertake to use the derived results to  obtain estimates for the 
average delay time for the four processes of transmission and reflection. Due 
to the absence of space- and time-reversal symmetry of the potential energy, 
there will be no special relationships between the two transmission times or 
between the two reflection times. Let the transmission delay times be called 
rtrans F t F ( ~ 2  t 21) and -rg?$(-z1 t z2), while the reflection delay times are called 
rrefl BtF(zl t z1) and rj?EB(z2 c z2). We proceed from the following principle 
for computing delay times (currents are taken with their algebraic signs intact): 

(output current of time at exit point) 
(output particle current a t  exit point) 

delay time = 
(87) (input current of time at entry point) 

(input particle current at entry point) ' 
- 

where the exit point is the same, or the opposite, as the entry point (i.e., z1 or 
z2) on reflection, or on transmission, respectively. We therefore have that 

General formulas for estimates of these delay times in first-order perturbation 
theory for weak potentials are derived in the appendix. 

4 Applications to s-waves and a step potential 
In this section we obtain expressions for the dwell times first, for s-wave scat- 
tering so that z can be regarded as a radial coordinate, and second, delay times 
in scattering from a t ,  x, y-independent step potential barrier in the z-direction. 

Let us now consider the simple problem of scattering from an infinite poten- 
tial barrier at z1 = 0 with z2 > 0 in an open and separately in a closed-channel 
case. The dwell time and the delay time for reflection are equal . The input is 
now controlled by f z (k ) ;  we infer from Eqs. (45b), (33), (36), and (38) that, 
in order that the first component of Q(t, x, y, 0) be zero for all t ,  z, y,  we must 
have 

fLt(k) = -fifI(k), for open channels, (894 

fLt(k) = -iff(k), for closed channels. (89b) 
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The expectation value of iI .2 is then zero at z1 = 0. we infer for open-channel 
input that the dwell time is 

while for closed-channel input that the dwell time is 

In the open-channel case we have an oscillatory contribution to the dwell time 
that is of diminishing relative importance as z2 becomes large. In this compu- 
tation, the dwell time contains interference terms between the input and output 
waves. If these interference terms are dropped, only the first term, which is 
proportional to z2, survives in the square brackets first rhs of Eq. (go), and the 
time delay on reflection is the distance traveled (222) times the average of the 
reciprocal of the speed of travel (mlhk,). 

Next, we generalize to case that again there is a large potential barrier to 
the left of z1 = 0 so that the transmission coefficients TBB(k; k') are zero: The 
expectation value ( ~ I ) , J , ( ~ )  is again zero. However, we assume an additional 
potential V ( t ,  2, y, z) ,  the support of which is contained in the interval [0, z2], 
and an open-channel input amplitude fg(k) with no input from the left, that 
is, f z (k )  0. The reflection coefficients RFB(k; k') now comprise minus the 
usual S-matrix elements for scattering from the potential+barrier. We infer 
from Eqs. (70) and (74) that 

exp ( -2i k: 22) FB I .  im + R  (k ,k)*-  2hkL2 

- JJ~losed d3k"RFB(k";k)* 

m 
x -  exp(-2n:'z2)RFB(k''; k') 

2hK:'2 
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In the above, the term involving RpB(k“; k)*(-i)bRFB/dkr(k”; k’) reduces to 
the familiar St(-ifi)aS/aE that has been derived as the extra dwell time for 
a scattering process in the presence of a time-independent potential-see Eq. 
(44) in Smith [30]. Note that in his Eq. (37) and otherwise, Smith defines 
initial-to-final index labels of the S-matrix and collision-lifetime matrix Q from 
left to right, the opposite of what is done here for input-to-output labels. The 
terms proportional to z2 are a generalized version of the “background” average 
of 2zz/(z-speed) as the dwell term for a non-interacting case; note that one of 
the two contributions to  the background time delay nevertheless involves the 
S-matr ix . 

The remaining terms on the rhs of Eq. (92) do not enter the traditional 
formulas: In particular, the terms with D2 in Eq. (76) involve interference 
between the input and output waves at the points z = z1 or z = z2 where 
a measurement is made. Note the presence in &(t) of factors of the form 
exp(f2ik,(’)zl) or exp(f2ikI(‘)zz); for a macroscopically large z1 and ZZ, these 
factors will be rapidly oscillating in ICI(’), and cause the effective cancellation 
of such contributions for all but extremely monochromatic and planar incoming 
and outgoing wave packets. Note also that the closed-channel contributions 
tend to  zero exponentially in Eq. (80) as z2 increases and z1 decreases away 
from the scattering region. 

We now assume that there is a finite, t ,  x, y-independent potential barrier 
of the generic type used by Bohm ([31], Fig. 17) but which can be attractive 
or repulsive. Choose a real number K ,  of physical dimension time-’, and a 
positive length a such that 

hK, 
0, otherwise. 

t/ t , x ,  y, for -a < z < a,  
V(t,GY,z) = (93) 

Given open-channel input only, we first define the vector 1; as 

and also 

when the particle can or cannot, respectively, pass over the top of the barrier 
classically. When K > 0, we shall obtain the intermediate case i, = 0 or kI = 0 
by limiting processes; the result of both limits will be the same solution to the 
Schrodinger equation, so that there is a continuity between the above-the-barrier 
and below-the-barrier S-matrices. 

We shall omit the details of the derivation, and state the results of a com- 
putation of the S-matrix: 

S(k; k’) = s(k) @ lopen(k - k’), (96) 
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where the 2 x 2 matrix s(k) is written 

[ tFF(k) rFB (k)] 
rBF(k) tBB(k) ’ 

s(k) = (97) 

When K _< 0, or when K > 0 with k above the barrier, we obtain the following 
components for the s-matrix, denoted with a subscript abv: 

For K > 0 and k below the barrier, we find the s-matrix components, denoted 
by a subscript bel, to be 

tcz = tfz = exp(-2ik2a) cosh(2kza) + - (“ - - - i:) sinh(2kzo)] - I ,  (99a) 
2 kz 

Note that both’s-matrices are unitary for each k, and that there is continuity 
of the results between iz + 0 and kz  -+ 0. 

We shall compute delay times for transmission across, and reflection from, 
the step potential according to Eq. (88). In order to evaluate the terms involving 
derivatives of the s-matrix and input amplitudes in a convenient 
after dropping perfect divergences, obtain 

where S means “imaginary part of7’. 
A computation shows that the imaginary part of the kt-derivative of the 

logarithm of tFF(k), rBF(k) ,  rFB(k), and tBB(k) are all the same, which result 
we call A(k). We omit the calculational details, and give the result: 

a 
akt  

3-ln[tFF(k)] = A(k) 

L \  

-A I t i k ,  k. (2 - 5)  sin(4$a)] , ’ k above barrier, (101) 
- - 1  
-& (5  + 2r sinh(4Szo)] , k below barrier. 
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Referring to Eq. (88), we can now compute the delay times upon transmission 
and reflection for left and right input, assuming the overall input is normalized 
as in (47). In the present case the reflected and transmitted currents of particle 
presence of Eqs. (81) and (84) reduce to 

XTLM = -//I d 3 q t m r B F ( k ) / 2 ,  (102a) 
open 

J J Jopen 

RI;;L(~~) = //lpen d3klfif:(k)rFB(k)~2, (102c) 

//lp,, d 3 k i ~ m t B B ( k ) i 2 ;  (102d) 

note that backward-flowing currents, whether on input or output, are negative. 
Also, we find that the input currents of time are, from Eqs. (83a) and (86a), 

r o u t  
B t B ( z l )  = - 

The average delay times are 

Suppose that the input amplitudes fk (k) are real and are concentrated about 
an open-channel value k'. Presuming also that the reflection and transmission 
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coefficients are slowly varying, we can assume them to be constant in the neigh- 
borhood of ko. The delay times of Eq. (104) then take the approximate forms 

2mz2 
Ak," 

r?EB(z2 t z2) = A(kO) + -. 

(105a) 

(105b) 

(105c) 

(105d) 

The function A(ko) therefore corresponds to the extra time delay in transmission 
as defined by Bohm ([31], Ch. 11.19, Eqs. (82) and (83)). We note also that Eqs. 
(105a) and (105b) resemble the formulas of Ref. [lo], Eqs. (10) and (11)-they 
position the barrier between 2 = 0 and z = a-except for the term in their 
Eq. (10) that adds ka to arg(AT) (i.e., adds 2k:a to arg(tFF) in the present 
notation): this part of their formula cannot be valid, as i t  yields an incorrect 
answer when tFF E 1, as is the case when the barrier height is zero. 

Bohm's result was formulated for an attractive well, but also holds for a 
repulsive well so long as the incoming wave vector is above the barrier; that result 
diverges, as does the classical result, for the transmission time for a particle 
grazing the top of a repulsive barrier. The function A(ko) differs from Bohm's 
time delay, in that it remains finite as ko approaches the top of the barrier, and 
it is defined for values of ko below the barrier. In fact we find, i s  ko approaches 
the barrier from values both above and below, that 

._ 

A(k0) + -[1 ma - 2(k:a)2] [l + (k,a) 0 2 ] -1 . 
hk,O 

This result also disagrees with that obtained in Ref. [lo], Eqs. (12b) and (13b), 
by the stationary phase method: if we put z2 = a and z1 = -a in Eq. (105a), 
we find 

(107) Ttrans 3ma 0 2 1  
F+F(+a + -a> = 7 1 1  + (k,a) 1- 9 

fik, 
which has a different dependendence on k: and a from the result in [lo]. The 
result [lo], Eq. (12b), taken for thin barriers, resembles the last rhs of (go), 
above, where there is reflection from an infinite wall at z1 = 0, and interference 
between backward and forward propagating signals in the computation of the 
time delay. As stated in [lo], in a paragraph between,Eqs. (12a) and (13a), 
those authors have not avoided the interference effects between incident and 
reflected waves in computing their phase times. 

It is also of interest to  find the time delay for transmission as the barrier 
height hK becomes large, while ko remails fixed. We find that 

2m 
hk, )E, ' A(ko) + - aSii,+cQ. 
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This result coincides with the asymptotic group delay (Ref. [12], p. 352, and 
[32], Eq. (13’)). Remarkably, the transmission delay time tends to zero as the 
barrier gets higher-at least, until relativistic effects intervene. However, the 
transmission probability behaves as 4(kz/k2)2 exp(-4/E2a) in the same region, 
so that proportionately very few particles cross the barrier. 

5 Discussion 
We begin this section by reemphasizing that it is the Schrodinger equation 
that is taken as fundamental in the present argument, and that a theory of 
measurement, a probability interpretation, and an uncertainty principle, are all 
presumed to be derivative ideas that may require alterations from their conven- 
tional forms in order t o  bring them into concord with the body of formalism 
presented here. 

In particular, we have relinquished the notion that the norm of a Schrodinger 
wave function, in problems involving input on the spatial walls of a region, repre- 
sents a probability in a straightforward sense: this norm is a net average current 
of particles across a surface. More precisely, if a large number of trids is made 
with the same input, the norm Eq. (15) represents a net particle transit count 
across a z=constant plane divided by the number of trials, and Eq. (13) repre- 
sents the normalized density of such counts (per unit spatial area per unit time); 
in making a transit count, particles are counted positively or negatively as they 
pass across the given z-plane in a positive or negative direction. The Schrodinger 
equation can create spatially and temporally localized eddies of probability cur- 
rent: even though a wave is made up entirely of a packet of F-type open-channel 
states, this current density can be negative in a neighborhood-see the exam- 
ples cited below-and therefore will be greater than one in a complementary 
set of the given a=constant plane. Hence, even for a packet of only free-particle 
F-type states this normalized particle count can fall outside the interval [0,1] 
on proper subsets of a z=constant plane, and is not a prcbability, dthough a 
transition process, as in the conventional interpretation of quantum mechanics, 
has irreducible randomness and is unpredictable in detail in contrast to a clas- 
sical process. A further complication results from the circumstance that this 
normalized particle count is not, when closed channels are present, even globally 
(i.e., across an entire z=constant plane) an algebraic sum of two separate cur- 
rents due to forward- and backward-moving particles, as there can be nonzero 
global interference between the F- and B-type closed-channel contributions to 
the total current. 

Since the sum of the projection operators for F- and B-type states-see Eq. 
(111)-is the unit operator on a z=constant plane, it is possible, with the given 
physical system, to  make a measurement of local (in (t,z,y)) net transit flux 
of particles across a proper subset of the plane. A local measurement of either 
the positive or the negative direction in z of a particle’s transit involves non- 
commuting projection operators, one in position space and one in wavenumber 
space. That is, we would then ask two incompatible yes/no questions: (1) Did 

1 
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the particle cross the plane in a given proper (t ,  2, y) subregion? (2) Did the 
particle cross positively/negatively in the t-direction? The outcome depends on 
the details of an often-repeated measurement on the system with the same input 
in each trial. To be sure, taking a sufficiently large subset of the t=constant 
plane for asking question (1) will, to a good approximation, be close to taking 
all of it, so that question (2) can be answered with negligible inconsistency. 
Also, the question “What is the difference between the numbers of particles 
crossing positively and particles crossing negatively across a small subregion of 
the z-plane?” involves no inconsistency, and yields a result predictable from the 
wave function alone; it is the separate local densities of positive and of negative 
crossings, not their difference, that depend on the measurement scheme. 

When closed-channel amplitudes are negligible, a probability interpretation 
in the mapping of input into output on two t=constant planes is feasible, due 
to  the unitarity of the open-channel So-matrix of Eq. (62a). 

A substantial effort has been dedicated to the establishment of a time-energy 
uncertainty principle-see the discussion and references in [33]. An uncertainty 
principle appears to be associated with a positive definite metric, a requirement 
that we have dropped. It is not obviously impossible to formulate some kind 
of a time-energy uncertainty principle within the present formalism in special 
circumstances, but we shall not investigate this subject here. 

Kijowski [16], [34] undertook to establish a time-energy uncertainty princi- 
ple by analyzing the evolution of a Schrodinger wave function in a space-like 
direction, and in this respect there is overlap between Kijowski’s work and the 
present undertaking. Kijowski’s first “unsuccessful attempt” ([16], $3) begins 
in a similar manner as that proposed above, but his inner product law does not 
involve an integral over time; since, as noted following Eq. (37), the wave func- 
tions of Eq. (36) do not satisfy the Cauchy inequality, the interference terms in a 
local inner product can make the current density negative for the superposition 
of two forward-traveling states, as shown in an example in [16], 53. Mielnik 
([18], 55, Lemma) noted that a Schrodinger wave packet that at t = 0 has its 
source entirely to the left o f t  = 0, say, could eventually give rise to probabil- 
ity currents normal to  the t = 0 plane that need not be everywhere positive. 
Similarly, the integrand for the particle current for the norm of a superposition 
of F-type open-channel states in Eq. (15) need not be everywhere nonnegative. 
These local negative currents all result from interference terms that yield zero 
net contribution in the present formalism due to the integral over t ,  2 and y in 
the inner product. 

Kijowski’s formalism is substantially different from the present one-the 
norm of an F-type state is given in [16], Eq. (9)-but in which the average 
time of crossing a spacelike wall for F-type states nevertheless reduces to  the 
same form ([16], $10) in terms of the probability current as Eq. (24). There are 
discussions of Kijowski’s work in [35], $1.5.1, and [36], $10.2. 

Mielnik [18] critiques both Kijowski’s [16] and Piron’s [17] attempts to es- 
tablish formalisms for spacewise propagation of a wave function, concludes that 
they do not offer a solution to  the problem of defining time as an observable, 
and makes no additional proposals along these lines. Although the initial ideas 
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of the two latter papers resemble that of the present paper, the respective imple- 
mentations differ considerably, so we shall not attempt further review of them 
here. 

Another question concerns the generalization of the effect of a measurement 
on a wave function that propagates in both directions across the surface on 
which the measurement is performed. Suppose in fact that, in a problem of 
type 11, two adjacent boxes occupy the space-like intervals [ z ~  ,221 and [ z ~ ,  231, 

and that a measurement is made (over t,z,y) at z = 22, which measurement 
partly “collapses” the wave function there. The input a t  z2 t o  both boxes can 
change directly or indirectly as a result of the acquired information, leading in 
turn to  a change in the overall output at ZI and z3, and, due to reflections, a 
change in the wave function at z2 at which the measurement is made. There 
is therefore a problem of consistency, in that the measurement at z2 indirectly 
changes the wave function at z2 and therefore changes the frequency of results of 
the measurement at z2, and so on. This problem is analogous to  the “grandfather 
paradox” (see [37], Ch. 4) of the influence of a physical system with itself between 
two different t=constant surfaces when two-way interaction occurs. No attempt 
at analysis of this problem will be made here. 

To recapitulate, the conventional probability interpretation derived from the 
Schrodinger wave function does not seem to apply when problems of type I1 are 
confronted. The claim is that the wave function in type I1 problems does permit 
the computation of certain expectation values, that is, average results of many 
repeated experiments with the same input signal. An interpretation involv- 
ing randomness of a more general nature than that which can be characterized 
by probabilities seems called for. We infer that the conventional interpreta- 
tion should be subordinated to an interpretation involving stochastic currents 
of particle presence, and, more comprehensively, stochastic currents of other 
physical quantities as temporal position, spatial position, energy, momentum, 
and so on. This “particle current” interpretation of the formalism can describe 
systems of both types I and 11; the usual probability interpretation then applies 
in problems of type I and other special cases. Although what appears to  be a 
mathematically consistent formalism has been constructed herein, and a prelim- 
inary physical interpretation advanced, many questions along these lines need 
to be addressed, and consistency with experimental tests established, before the 
proposal can with confidence be regarded as a physical theory. 

The above limitations notwithstanding, the formalism proposed herein has 
obtained results that agree to  an extent with some special results previously 
derived, and has secured results that would be difficult to obtain by other pub- 
lished methods of analysis: for example, a generic expression Eqs. (75)-(80) 
for the average dwell time for a particle reflecting from or passing through a 
time-dependent barrier. 
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6 Appendix: Perturbation theory 
We want to obtain the dwell times for a signal impinging on a weak potential, 
which diminishes rapidly in absolute value as (tl or 1x1 or (yI tend to infinity, to 
first order in perturbation theory. Remarks at  the end deal with delay times in 
the same circumstance. 

We define HO and its adjoint operator (HO)adj following Eq. (11): 

(109a) 

(109b) 

(HO)adj differs from ( H o ) ~  by changing the signs of the partial derivatives and 
making them act to  the left, as indicated by the arrows. We also define projec- 
tion operators for free-particle solutions, making use of Eq. (44): 

P F ( z ;  t’, z’, 9’; t ,  2, y) = fi-’ //lpen d 3 k Z F ( k ; t ’ ,  z’,y’,.z)ZF(k;t, ~ , y , z ) ~ M  

(110a) 

P B ( a ;  t‘, z‘, y’; t ,  2,  y) = - I T 1  d3k ZB(k; t’, z’, y‘, z)ZB(k;  t ,  z, y, z ) ~ M  

+ h-’ ]// d3k EB (k; t’, z’, y’, z ) Z F  (k; t ,  z, y , z )  M 
closed 

(110b) 

It can be shown that PF and PB are independent of z ,  and that 

PF(z ;  t’, z’, y’; t ,  z, y) + P y z ;  t’, d, y’; t ,  z, y) = I2 @ d(t’ - t)S(z’ - z)d(y’ - y). 
(111) 

Let us obtain the causal Green’s function Gi+) for the adjoint to Eq. (3) 
with V ( t ,  z, y, z )  E 0, in complete space-time: 
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This Green’s function proves to be 

GP)(t’ ,  z’, y’, z’; t ,  z, y, z) 

d3k  6(z‘- z)Z:F(k;t‘,z’,y’,z‘)ZF(k;t,z,y,z)tM 
= kJJlpen [ 
+ e(z - ~ ’ ) ~ ~ ( k ; t ’ , z ’ , y ’ , z ’ ) E ~ ( k ; t , s , y , a ) ~ M ]  (113) 

+ t JJLsed d [ 6(z‘ - z)EF(k; t‘, z‘, y’, z’)ZB(k; t ,  z,g, z ) t M  

- 6(z - z‘ )~B(k; t ’ ,z ‘ ,y f ,z ‘ )~~(k; t , z ,y ,z ) tM] .  

This Green’s function can be derived from the usual Feynman-type free-particle 
kernel ([38], Eq. (5.12)), and is therefore causal in time. 

Let * o ( t ,  z, y,  z) be a solution to the free-particle Schrodinger equation in 
a region covering BZ and its boundary, and *( t ,  z, y, z )  be a solution to  the 
Schrodinger equation with a generic interaction Hamiltonian HI  in the same 
region: 

( 114a) 

(1 14b) 1 dQ 
i dz --(t,z,y,z) -- Ho*(t,z,y,z) - H1Q(t,z,y,z) = 0. 

The H1 derived from Eq. (3) is 

but more general cases occur if magnetic fields are present and the particle 
is charged. Standard manipulations on Eqs. (112) and (114) now yield, for 
(t’, z‘, y‘, z’) E B2, 

Q(t’, z’, y’, z’) = Qo(t’, z‘, y’, z’) + IJJJL2 d t  d x  d y  d z  

x GP)(t’,z’,y’,z‘;t,z,y,z) 

x [*(t, z, y, z) - * o ( t ,  z, y, z)] } l z=zz  + JJJJ dt  d z  d y  dz 
z=z* 0 2  

x GP’(t‘, x’,y’,z’; t , z ,  y,z)HlQ(t, z,y, z). 

The first term on the rhs disappears after an integration by parts on t ,  2, y, since 
M(Ho) tM - Ho = 0. The second term on the rhs, involving triple integrals at 

(116) 
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z = z1 and z = z2, vanishes since * ( t , z , y , z )  - *o( t , z , y , z )  self-consistently 
has only outgoing waves at z = z1 and at z = z2, while scrutiny of Eq. (113) 
indicates that, since z1 < t’ < z2, these contributions are annihilated by the 
Green’s function. Hence, we obtain an integral equation for * that readily yields 
a perturbation expansion in powers of HI: 

*(t’, z’, y’, 2’) = @‘o(t‘, IC’, y’, 2’) 

(117) 
We substitute 

* ( t , s , y , z )  = *o(t,z,y,z) = ZC(k; t , z ,y , z )  (118) 

on the rhs of Eq. (117), use Eq. (113) for the Green’s function, and, omitting 
closed-channel contributions, infer that 

lim Q(t’,z’,y’,z’) NN EC(k;t‘,z’,y’,zl) 
Z ’ - + Z l +  

[ZB(k’ ; t f , z ’ ,y ’ ,  z l )ZB(k’ ;  t ,  z, y, z ) tMHIZc(k;  t , z ,  y,z), 

(119) 
and that 

lim 
z’+zz- 

Q(t‘,  z’, y’, z‘) = Zc ( k ;  t‘, IC‘, y‘, z2) 

I =F ( k  I ; t  I ,z’,y’,21)EF(k’;t,z,?!,t)tMHlZC(k; t , z , y , z ) .  

(120) 

(121) 

Comparing the above with Eqs. (45) and (53)-(55), we infer that 

Scc(k’;  k )  x bC’CIopen(k’ - k )  + iAc’c(k’; k ) ,  

where A is the Hermitean matrix 

(122) 
Let us now evaluate the dwell times rgIc for forward (C = F )  or backward 

(C = B)  input. We use Eqs. (75)-(80) with the terms involving the D2, the 
Dd, and the interference between forward and backward input, all omitted. 
Substituting Eq. (121), and following an integral by parts, we find that the 

34 



terms involving the derivatives of fk(k) cancel, with the results 

(123a) 

(123b) 

It can be shown that both the above times are real. 
The reflection coefficients are both first order in H I ,  so the reflected particle 

current is of second order in HI for either type of input-all the particle current 
is transmitted in the first-order approximation. The mem currents of time upon 
reflection are also second order in Hl (see Eqs. (83b) and (86b)). Hence delay 
times for reflection involve the ratio of two second-order quantities, so that we 
can obtain at most a kind of zeroth-order approximation to the reflection delay 
times; each transmission delay time is the same as the respective dwell time to 
first order in hrl. To estimate the B t F reflection delay times, we substitute 
the Cr = B,C = F block of the approximate S-matrix into Eqs. (sla), (83a), 
and (83b), and combine the results in Eq. (88b); for the F c B reflection delay 
times, we substitute the cr = F,C = B block of the S-matrix into Eqs. (84a), 
(86a), and (86b), and combine the results in Eq. (88d). 
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